5 Benefits of Replacing Tape Backup with Cloud Storage

23 Sep.,2024

 

5 Benefits of Replacing Tape Backup with Cloud Storage

Backup tape storage was once the de facto solution for enterprise backup needs. Today, however, businesses are increasingly viewing tape as a legacy technology in need of a replacement.

Please visit our website for more information on this topic.

Many enterprises are grappling with the tape vs cloud backup debate. Moving tape backup to the cloud seems almost inevitable, but is it the right choice for your business?

Some companies may decide to complement an existing tape-based data storage strategy with cloud-based storage, and there are many reasons to go that route. However, if you&#;re among those looking into tape versus cloud backup, consider these five benefits of replacing your legacy tape backup systems with modern cloud storage.

Wait, is tape still used for data storage?

Yes, magnetic tape backups are still used at many organizations&#;usually not for primary storage, but as archival storage and as part of a backup strategy.

There are several reasons why.

Long used as a lower cost, reliable, and secure option for storing cold data (not commonly accessed or used regularly), backup tape storage is still a part of many organizations&#; data storage and backup strategy. However, most are by now at least considering cloud storage as a future goal.

Tape was an attractive option in its day: there was and is certainly appeal in being able to easily isolate tape backups from threats of physical attack. And having on-site backups means not having to worry about the current network or internet speed or availability.

Last, tape is familiar technology that many enterprises understand well. Those that aren&#;t considering replacing the technology may be taking an &#;if it isn&#;t broken, don&#;t fix it&#; approach.

Main Disadvantages of Tape Storage

Tape storage may not be broken, but it&#;s at least showing its age. Consider these disadvantages of sticking with tape rather than moving to the cloud for long-term storage.

First up is speed. Storing and retrieving data from tape storage systems is slow. System recovery from tape storage can take longer, increasing downtime and hurting operations.

Second, someone needs to be physically present to label new tapes, troubleshoot issues, perform maintenance, and organize the tapes. Finding missing or poorly labeled tapes is sometimes necessary as well.

Also in the tape backup vs cloud discussion is media failure, a major concern for tape storage. Tapes don&#;t last forever: they slowly break down over time and do so even faster in poor conditions. Also, any dust in the air risks scratching the magnetic coating of the tape, making it unusable. Moving tapes around also risks corrupting data, and once a tape is physically damaged, the data is unrecoverable.

Tape backup systems have limited backward compatibility, usually no more than two generations back. For example, LTO-8 (linear tape-open 8) is only backward compatible one generation. This means organizations bear new financial and resource costs every time they update their tape technology.

Why should you replace tape backup with cloud storage?

So what should organizations use for long-term storage and data protection as an alternative to tape backup? Cloud-based object storage offers a number of benefits, from accessibility and performance to security and cost.

1. Access to Data

First, cloud storage gives you faster access to more up-to-date data.

With tape, backups are not automatic nor as frequent as is possible with cloud backups. There&#;s a practical or functional limit to how frequently a business can make tape backups &#; a limit not shared by cloud storage. In an increasingly data-driven world, weekly or nightly backups are no longer enough for many industries, as the amount of data that could be lost before the next backup is immense and/or business-critical. 

Highly efficient networks working with cloud backups can handle data transfers quickly, automatically, and cost-effectively. This improved speed and access goes both ways, too, improving an organization&#;s ability to upload backups and to access those files later on.  

A good industry rule to go by is the 3-2-1 rule. That is, a business should have three copies of their data in existence at any given time. In addition, a company should have two different media types (disks, disk drives, tape, cloud) storing this data within those three copies. To protect against theft and local conditions, especially disasters such as flood, fire, and other natural disasters, one of those copies should be off-site.

Cloud backups make distributing your backups and following the 3-2-1 rule far easier. Cloud-to-cloud backups give your business affordable access to multiple off-site backups.

2. Significantly Lower Costs

Tape used to be the most economical choice for long-term storage solutions, but that&#;s no longer the case. The constant need to upgrade infrastructure and maintain aging media creates recurring and increasing costs, even as the cost of the cloudmany cloud services continues to drop. 

Updating software and firmware to use tape backups is time consuming and costly, as are the numerous human interventions that cloud backups bypass.

Here&#;s a real-world example: storing about 12 TB of data via tape costs about $100,000 by just the second year. Lyve Cloud&#;s cloud backup solution costs just a few hundred dollars for a backup of the same size.

3. Security

Cloud backup allows for the use of encryption, allowing for the secure movement and storage of data. Tape backups generally don&#;t allow for any corresponding security measure (though they are largely only vulnerable to physical theft). 

Maintaining multiple backups is another form of security: if one copy is corrupted, another copy (especially one in another location) can be used to restore the system. The cloud makes this far simpler, and many cloud providers include redundancy like this in some or all packages.

Link to Goodi

4. Full-Service Flexibility

Tape can&#;t provide the efficiency of scalable storage that the cloud provides. Business needs change over time, and scaling up on-site capabilities is a major investment. Scaling down is similarly complicated, given the time and resources required to decommission physical space, disks, and network equipment.

When considering tape versus cloud storage, the cloud allows near infinite scaling, services to be added and deleted as needed, and various full and partial backups to be run automatically. It&#;s true full-service flexibility that tape systems simply cannot match. 

5. Bye, Obsolescence

Businesses are constantly fighting technology obsolescence. But no matter what new technologies, regulations, or standards come into play in the future, cloud providers can adapt to meet the most best practices. Also, when considering goals for recovery, cloud backup is much more suited to meet RPOs (recovery point objectives) and RTOs (recovery time objectives).

Considering what the cloud has to offer, tape backup replacement should be a priority for companies looking to cut costs and increase efficiency. Tape backup might have made sense in the past, but cloud offers much more flexibility for the present and future.

Get the benefits: Catch up with Lyve Cloud 

Considering a tape-to-cloud or hybrid migration? You need a company you can trust to understand and meet your needs, one that will support you during migration and as you review your legacy data.

With Lyve Cloud, you can rest easy knowing that confidentiality and security are maintained, data is organized, processes are optimized, costs are reduced, and you are in control of how your data is accessed and backed up.

While reviewing and upgrading your backup strategy is easy to overlook, the cost of failure cannot be overstated: among businesses with inadequate backups, 94 percent of companies that are hit with catastrophic data loss will not recover. But with a strategic cloud partner as part of your backup strategy, you can avoid this risk.

Ready to start your move to the cloud? Explore Lyve Cloud now! 
 

Protecting Adhesive Tape Systems From Static Electricity

Pressure-sensitive adhesive tapes are prone to the buildup of electrostatic charges, therefore users and converters of PSAs need to have a good understanding of static electricity - its causes, its hazards, and the most effective ways to control it.





Pressure-sensitive adhesive (PSA) tapes are prone to the buildup of electrostatic charges. If you have ever felt the hair on your arms stand up when near an unwinding roll of tape, you have felt static electricity.

High levels of electrostatic charges can be dangerous, and moderate levels can permanently destroy the adhesive system, fouling and jamming production processes and damaging finished products.

New technology, which allows faster production speeds, exacerbates static-related problems in the adhesives tape system. To reduce static, operators sometimes will intentionally slow down the production process, which can be a costly solution.

For these reasons, users and converters of pressure-sensitive tapes need to understand static electricity: the causes, the hazards, and the most effective ways to control it.

The Cause: Contact and Separation

Static electricity is an accumulation of electrical charges on a surface. The polarity of the charge can be the result of an excess of electrons (negative charge) or a deficiency of electrons (positive charge). Charges accumulate on the surface of non-conductive material, such as paper or plastic film; they can also accumulate on ungrounded conductors, such as machine parts and the human body.

When surfaces are in contact with each other, a transfer of surface electrons occurs. Friction, pressure and web speed will accelerate this transfer. When separated, the surface, which has gained electrons, becomes negatively charged, and the mating surface giving up the electrons becomes positively charged.

This process, known as triboelectrification or tribocharging, results in the generation of static charges on the surface of PSA tape as it unwinds from the roll and contacts and separates from surfaces such as idler rolls, nip rolls, and printing or coating rolls. The buildup of electrostatic charges is a cumulative process, increasing each time the web contacts another surface. PSA tape can therefore accumulate a high charge as it passes through transport systems where it comes in contact with several idlers.

On non-conductive materials, such as the papers and films used for PSA tape, charges do not build up uniformly across the surface. A single contiguous surface may accumulate a positive charge in some regions and a negative charge, or no charge, in other regions. The intensity of charge will also vary dramatically.

The Impact

The shock or spark caused by so-called electrostatic discharge (ESD) events is common. On a small scale, you feel an ESD in the form of a spark when you touch a door knob after walking across a carpet. On a much larger scale, an ESD is observed when lightning storms light up the sky. An ESD occurs when a static electrical field exceeds a certain threshold value, causing an ionized conductive channel to form in the air as nature's desire for balance plays out.

Personal Safety. In the production environment, an ESD event may simply result in an uncomfortable electric shock or, if charges are high, the shock can cause burns or even cardiac problems. In addition to the direct health effects of exposure to electrical current, there is also the secondary hazard of operators suddenly recoiling from the shock and injuring themselves by falling against dangerous machinery.

Explosion and Equipment Damage. Static discharge often results in a spark. Areas with flammable liquids or gases, such as solvents, must remain spark-free at all times. Electrostatic discharge can have sufficient energy to ignite hazardous vapors in coating heads and gravure printing operations. An ESD event can also disrupt logic in PLCs and sensing equipment, causing processing errors and costly down time.

Damage to the Adhesive System. Static buildup and ESD events can damage the PSA release liner of the product being unwound. When the silicone coating is disrupted by static, it will no longer function as a release system in the area affected by the discharge. The adhesive will "split" between two sides of release liner. Alternatively, the liner can fail to release where it is damaged, making it very difficult to remove the liner as designed.

Equipment Jams and Product Damage. The accumulation of electrostatic charges can cause problems, even if ESD events do not occur. If static charges are not neutralized, sheets of materials will stick together, creating jams in downstream processes. Electrostatic fields also attract dust particles, fibers, bugs and hair, resulting in surface contamination. This causes obvious quality problems in printing, coating and laminating, and cleanliness problems with medical PSA applications. Moreover, static charges can cause uneven coatings and "wicking" of inks, and pressure-sensitive tape carrying a static charge can damage sensitive electronic components.

Controlling Static

A number of measures can be taken to control the effects of static electricity during the use and conversion of pressure-sensitive tape.

The first step is to identify the "hot" areas that appear to generate the highest static charge. This can be accomplished with a small, inexpensive handheld electrostatic field meter. You will reach your own comfort level but, in general, action should be taken wherever the charge approaches the 5-kilovolt range.

Material selection in the composition of the PSA system has a significant effect on the propensity for the generation of static electricity. One reason that release liner materials such as plastic film and poly-coated paper are selected is because of their low hygroscopic quality (low moisture absorption), which provides resilience to the damaging cockling (wrinkling) effects of exposure to humidity. Paradoxically, this resilience to humidity makes these materials more prone to the accumulation of static charges on the surface. In contrast, hygroscopic material, such as densified Kraft paper without poly-coating, benefits from the presence of water molecules that facilitate the movement of electrons, which helps reduce electrostatic charges on the paper's surface.

The relative humidity of the ambient air has a similar effect. The moisture in humid air helps to dissipate electrostatic charges and reduce charge buildup by increasing surface conductivity. High relative humidity will reduce charge formation, but will not prevent static charge buildup and discharge. Maintaining relative humidity above 50% will lessen the likelihood of static problems on hygroscopic materials such as uncoated paper. This can be accomplished with a humidification system such as a simple series of water misters.

The design and maintenance of equipment is also important in controlling static. Because friction and pressure can accelerate the buildup of static charges, it is important to minimize slippage in the transport system. If the PSA tape contacts an idler roll that is not turning freely, or if it travels over a stationary bar or machine surface, the material can become highly charged. Conductive materials, such as metal rollers, need to be continuously grounded. Rollers and the shaft of the PSA roll itself can become electrically isolated because of non-conductive lubricants, dirt and rust, and excessive clearances of the bearings, especially during high-speed operations. To detect such problems, resistance-to-ground measurements should be performed while the machinery is running at normal operating speed to ensure proper ground at all times. This is extremely critical in solvent coating and gravure printing processes.

Static Control Devices

Three types of static control devices are commonly used in production facilities where pressure-sensitive adhesive tapes are used and converted: grounded pads, passive ionizers, and active ionizers.

Grounded pads, also called antistatic protected floor mats, provide operators with limited protection from ESDs due to induction charging of the human body. If the operator is standing on a properly grounded pad (connected to ground with a proper current-limiting resistor) and with conductive footwear (not rubber soles), the pad can reduce operator shocks. But grounded pads do not eliminate the other problems caused by static electricity and do not protect the operator from direct discharge from a highly charged unwind or rewind roll, for example.

Ionizers offer a more effective approach. Ionizers produce large quantities of both positive and negative air ions. These ions are directed to areas where electrostatically charged surfaces require neutralization. The ions of opposite polarity are attracted to the charged surface until electrical equilibrium is achieved.

There are two general types of ionizers: passive ionizers and active ionizers. Passive ionizers, also called induction ionizers, include static tinsel and static string, which are simply grounded emitters placed parallel with-and close to-the charged material. The electrical energy of the charged material will excite the passive ionizer, causing it to generate air ions of the opposite polarity. If properly positioned, a passive ionizer can successfully reduce bulk electrostatic charges. Typically, an active ionizer may follow the induction ionizer to "clean up" residual charges, especially in critical applications.

Passive ionizers have the advantage of low purchase costs. However, a passive ionizer is highly operator-dependent. It must be positioned at the correct distance from the web, and not come in contact with it. If a passive ionizer comes in contact with the charged material, it may become ineffective and the filaments will wear off and contaminate the web and the machinery. If positioned too close, it can overcompensate and result in a charge of the opposite polarity. It must be replaced whenever it becomes dirty or damaged.

Active ionizers have a higher purchase cost, but are much more reliable and require minimal maintenance. Unlike passive ionizers, they are electrically operated or use radioactive materials for the ion source, and are not dependent on local conditions or the electrostatic charge on the web.

High-output static neutralizer bars are the most common type of active ionizers for PSA applications. They are highly efficient, electrically powered bars that are permanently mounted across the web. Another type of active ionizer is a static blower, which uses fans to blow positively and negatively ionized air at the moving web, thus neutralizing the charged surfaces.

According to Scott Shelton, North American Sales manager at Simco Industrial Static Control, there have been several important recent advances in static control technology. For example, the new patented Simco Roll Follower uses photo sensors to detect the outside diameter of unwind and rewind rolls to continually reposition the static bar to maintain the optimal distance from the material roll. State-of-the-art static bars perform effectively at distances of up to 20 inches from an unwind or rewind roll, or up to 6 inches from the web, even when the web is traveling at high speeds. The newest bars are also self-monitoring, with fault monitors and alerts to indicate when they require cleaning.

Safe, Efficient Production

There is no need to slow down your production process to avoid problems with static electricity, even during the dry winter months. A trained static control engineer can evaluate your facility and determine the best option for controlling static on your equipment for the benefit of your employees, your products, and your customers.

For more information, contact Adchem, Old Country Road, Riverhead, NY ; (631) 727-; fax (631) 727-; ; or visit http://www.adchem.com .

For more information, please visit Tape Coating Machine.

Links