What is roller straightening?
Roll straightening is the correction of shape defects caused by repeated bending when the rolled material passes between two rows of staggered rollers. Roll straightening is carried out on a roll straightening machine or inclined roll straightening machine. Roller straightening is widely used in the straightening of sheets, strips and profiles, and inclined roller straightening is used in the straightening of pipes and bars. Roll straightening is an important process in sheet metal production. Due to the step change of straightening force in the process of straightening bite and tail swing, the straightening effect will be affected by the change in the length of the whole plate straightening and the change of the pressing process.
How does the roller straightening work?
A straightening machine is the equipment for straightening metal profiles, bars, pipes, wires, etc. Roll straightening, the correction of a shape defect caused by repeated bending of the rolled material as it passes between two rows of staggered rollers. A brief introduction to the correction of shape defects caused by repeated bending of the rolled sheet as it passes between two rows of staggered rollers. Roll straightening is carried out on roll straightening machine or inclined roll straightening machine. Roller straightening is widely used in the straightening of sheet, strip and profile, and inclined roller straightening is used in the straightening of pipe and bar.
According to the type and range of materials to be processed, TX can provide the optimal solution with the proper diameter and numbers of roller, roller spacing, speed and etc, with the purpose to remove most of defects like coil set, cross bow, edge wave, and center buckle, dents, curvature, camber and so on. To achieve the highest precise flatness for the material.
TX also supplies the standalone machine for metal sheet and parts, like perforated sheet, stamped, flame-cut and laser-cut parts, high tensile steel and so on.
Introduction to working principle of roller straightening machine:
In the rolled products, the shape defects of some large section rolled pieces are characterized by initial state curvature with the same value and direction (original curvature 1/r0), while most of the shape defects are characterized by indeterminate value and direction of original curvature (between 0 ~ ±1/(r0)min). For the latter type of rolled piece, the residual curvature tends to be the same after the elastic-plastic reverse bending of the same curvature and can be straightened after an appropriate amount of reverse bending.
The position of the rollers is at an angle to the direction of movement of the straightened product. Two or three large rollers are active pressure rollers, which are driven by the motor to rotate in the same direction. On the other side, several smaller rollers are driven pressure rollers, which are driven by the friction of the rotating rod or pipe. In order to achieve the desired compression of the roller on the product, the position of these small rollers can be adjusted simultaneously or separately forward or backward. Generally, the more rolls there are, the higher the accuracy of the straightened product. After the product is bitten by the roller, it continuously makes straight line or rotating motion, so that the product bears various aspects of compression, bending, flattening and other deformation, and finally achieves the purpose of straightening.
Leading manufacturer supplier of cold roll forming machine
Foshan Te Xiang Machinery Co., Ltd is a China leading manufacturer of metallic processing machines, including slitting line, cut to length line, stainless steel polishing line, ERW tube mill line, roll forming machines, embossing line and etc.
Leveler is the core equipment of strip and plate processing machine, therefore TX has been dedicated to developing and producing the top quality precision leveler for coil strip, plate, and machine part. TXs leveller is capable to process all kind of ferrous and non-ferrous material with thicknesses from 0.1 mm to 25mm, and width mm max.
TX provides 4hi, 5hi, 6hi leveller for both types: fixed frame type and cassette type.
If you are looking for the high performance leveler or roller straightening in the cut to length line, feel free to send an inquiry to contact us.
Contact person: Mai(Mr.)
:
Mobile//Line/WeChat: +86-
Steel production and processing are continuous operations where the last step is coiling. Steelmakers and processors use tension when coiling to avoid producing soft or collapsing coils. Coiling induces tensile and compressive stresses into the strip, and these stresses can contribute to blank or part distortion in subsequent processes. Unless sufficient winding tension adjustments are made, the degree of these stresses change throughout the coil whereas the outer laps of the coil may be on the order of 6 feet ( mm) in diameter, the inner laps typically are wound on a 20 inch to 24 inch (500 mm to 600 mm) diameter mandrel. In addition, the magnitude of these stresses increases with higher strength products, leading to coil shape imperfections like coil set and crossbow.
Coil set is a bow condition parallel with the rolling direction, and curves downward in the same direction as the upper outside lap of an overwound coil (Figure 1a). Here, the top surface of the coil or strip is stretched more than the bottom surface, and typically becomes more severe as the coil is processed and the lap diameter decreases. Crossbow is a bow condition perpendicular to the rolling direction, and curves downward in the same direction as the upper outside lap of an overwound coil, with the center portion of the sheet raised a measurable amount above the sheet edges (Figure 1b).
The first operation when unwinding a coil is some type of shape correction to ensure flatness before further processing. There are two main types of equipment used to create a flat coil a straightener and a precision leveler. While these two types of equipment are similar, a precision leveler has additional capabilities. Both bend the coil back and forth over a series of work rolls to alternately stretch and compress the upper and lower surfaces (Figure 2). Critical equipment parameters include roll diameter, roll spacing, backup rolls, roll material type, gear design, backup rolls, overall system rigidity, and power requirements. The amount of force required to relieve the residual stresses is a function of the sheet thickness and yield strength. Equipment sufficient for shape correction on conventional grades may not be sufficient to completely flatten the advanced steel grades available now and in the future.
Straighteners and levelers have a series of rolls that progressively flex the strip to remove the residual stresses. Each successive roll pair has an adjustable gap to deform the sheet to a targeted amount with the goal of resulting in a flat coil once the steel passes through all the rolls. The entry end has the smallest gap, putting in the most deformation. The last pair of rolls has the largest gap, usually set for metal thickness. The gap profile varies based on thickness, yield strength, and equipment (Figure 3). Many equipment manufacturers have generated tables to guide the operator as to the best settings for various yield strength/thickness combinations.
If you are looking for more details, kindly visit Lihao Machine.
Removing coil set requires permanent yielding in the outer 20 percent of the top and bottom surfaces of the metal. The central 80 percent of the thickness remains unchanged.T-14 Straighteners are appropriate for this type of shape correction (Figure 4). Only end bearings support the simplest straighteners, with no backup rolls used. Closing the entry roll gap risks deflection of the unsupported center, potentially leading to creating edge waves in the coil.
Eliminating crossbow and other shape imperfections like buckles or waves requires permanent yielding in the outer 80 percent of the top and bottom surfaces, with only the central core 20 percent remaining in the elastic range.T-14 Precision levelers, which applies tension to the strip as it bends around more smaller diameter rolls, can achieve this deformation (Figure 5). While this deformation can get the coil shape closer to flat, it also reduces the inherent formability of the grade. Processors should use only the least amount of deformation necessary to correct the shape to retain sufficient formability for stamping or other operations.
Yield point elongation (YPE), Lüders lines, and stretcher strains are names describing the same phenomenon seen in some annealed or aged metals. A related defect called fluting occurs in V-bending. Leveling at-risk coils with repeated cycles of bending and unbending, like shown in Figure 3, may be an effective way to minimize stretcher strains or fluting. However, process control is critical, since excessive leveling work hardens the coil and results in increased strength and reduced ductility. On the other hand, insufficient leveling does not address the defects related to the yield-point phenomenon.
Recent studies K-24, K-48, K-49 describe the importance of sufficient leveling, using real-world examples as well as simulation to model the phenomena and show potential corrective actions, as shown in the following animations.K-50
Figure 6 shows an animation of V-bending without any roller leveling. The fluting defect occurs, since the formed panel shape does not conform to the punch. Figure 7 is an animation of leveling with roller penetration deep enough to produce deformation equivalent to an 85% plastic fraction. Figure 8 presents a closer view of the V-bending, highlighting improved formed panel shape conformance to the punch. The references cited above detail the simulation methodology.
The progressively higher yield strengths for AHSS are challenging the capabilities of straighteners and precision levelers that were not designed for flattening these high strength materials. Equipment manufacturers have been studying and developing solutions to address this issue. There are a series of factors related to the design of straighteners and precision levelers affected by advanced steel grades:
Roll Diameter Leveling rolls for AHSS generally are smaller in diameter than those used for mild steel, providing a smaller radius around which to bend the material. This is because exceeding the higher yield strength of Advanced High Strength Steels requires a more aggressive bend.
Roll Spacing Work roll center-spacing will be closer for AHSS than for comparable mild steels. Closer spacing leads to the requirement of more force to reverse-bend the material, resulting in greater power requirements for processing.
Roll Support Larger journal diameters with larger radii and bearing capacity will withstand the greater forces and higher power required to straighten AHSS.
Roll Depth Penetration The upper rolls must have enough travel to be able to penetrate the lower fixed rolls sufficiently so the deformation exceeds the yield strength of the AHSS grade. This penetration may need to be as much as 50 to 60 percent greater than for mild steels.
Roll Deflection Given the greater force requirements for straightening AHSS, work roll deflection becomes a concern especially with smaller-diameter rolls more likely to flex and deflect. Processing wider sheet also increases the deflection risk. Excessive work roll deflection results in undesirable side effects such as edge waves, increased journal stresses and premature gear failure. Backup rollers prevent excessive work roll deflection.
Roll Material Higher strength materials and special heat treatment should be employed to ensure rolls can withstand greater stresses for longer periods without experiencing fatigue failure.
Gear Materials Gears that drive the rolls should be produced from heat treated high strength materials to produce smooth running, chatter free roll drive for long life under high loads.
Gear Positioning Closer roll center spacing requires higher power transmission and results in a smaller gear-pitch ratio, which reduces gear power ratings.
Gear Sizes To compensate for the gear positioning issue, flattening AHSS grades requires wider gear faces as well as stronger outboard support of journals and idler shafts to produce higher gear power ratings.
Frame Rigidity The higher strength of advanced steels results in stresses throughout all the components of the processing unit. Frame rigidity is vital to prevent work roll deflection.
Equipment manufacturers have also developed design solutions that address processing of AHSS. As an example, several manufacturers have designed equipment with removable cartridges allowing for swapping between sets containing differently sized rolls, gears, and support structures. As they switch jobs from AHSS to conventional steels, they swap in the appropriate cartridge. This also allows for off-line roll cleaning and maintenance.
Remember that the likelihood of coil set and residual stresses in the coil increases with strength. Operators must take proper precautions when cutting the strapping banks used in coil shipment to avoid clock-springing.
Newer processing equipment may contain additional hold-down arms or other features to protect both plant personnel and equipment from damage.E-11
Stamping AHSS materials can affect the size, strength, power and overall configuration of every major piece of the press line, including material-handling equipment, coil straighteners, feed systems and presses.
Higher-strength materials, due to their greater yield strengths, have a greater tendency to retain coil set. This requires greater horsepower to straighten the material to an acceptable level of flatness. Straightening higher-strength coils requires larger-diameter rolls and wider roll spacing in order to work the stronger material more effectively. But increasing roll diameter and center distances on straighteners to accommodate higher-strength steels limits the range of materials that can effectively be straightened. A straightener capable of processing 600-mm-wide coils to 10 mm thick in mild steel may still straighten 1.5-mm-thick material successfully. But a straightener sized to run the same width and thickness of DP steel might only be capable of straightening 2.5 mm or 3.0-mm thick mild steel. This limitation is primarily due to the larger rolls and broadly spaced centers necessary to run AHSS materials. The larger rolls, journals and broader center distances safeguard the straightener from potential damage caused by the higher stresses.
Are you interested in learning more about Sheet Metal Straightener? Contact us today to secure an expert consultation!