In Part 1, we explained the structure, functions, and types of oil seals.
You can find more information on our web, so please take a look.
Oil Seals (Part 1): The structure, functions, and types of oil seals
Oil seals come in various shapes to fit the machines and substances to be sealed.
For this reason, when designing a machine, it is important to select the oil seal that is right for that machine.
That's where this column comes in.
We will explain the key points for selecting the oil seal that is right for your machine.
Oil seals come in a wide range of types, and they also have various sizes.
When selecting the right oil seal for your machine from among these many varied types of oil seals, the following two criteria are very important.
If these criteria are met, damage of the machine can be reduced, the time needed to replace the oil seals when performing repairs can be shortened, and the machine can be used for a longer period of time.
In this way, selecting the appropriate oil seal will lead to machine design that is economically superior!
In general, oil seals should be selected in the order of priority indicated in Table 1.
However, when you actually select the oil seal to use, the most important factors are past success history and points of improvement, so it is not necessary to follow this order to the letter.
Select your oil seal type according to Table 2.
<Seal selection example>
Based on the above flowcharts, the oil seal type that meets the requirements shown in Table 3 would be the type code MHSA or HMSA shown in Table 4.
Shaft surface speed
(peripheral speed)
6 m/s 5 Air-side condition DustyFor a more detailed discussion of seal types and type codes, please see the following:
The rubber material used in the oil seal should be selected based on the operational temperature and substance to be sealed.
Table 5 lists the major rubber materials along with their operational temperature ranges.
Note that it is necessary to check the compatibility with fluids.
<N.B.>
Extreme pressure additives are compounds added to the lubricant. They are activated by heat and chemically react against rubber, which deteriorates rubber properties. For this reason, it is necessary to check for compatibility with rubber materials.
Nitrile rubber (NBR)
Standard typeWell-balanced in terms of resistance to abrasion and high and low temperatures
-30~100
Necessary to check compatibility with fluids
(See *2)
Fluids
• Fuel oil
• Lubricating oil
• Hydraulic fluid
• Grease
• Chemicals
• Water
110
Hydrogenated nitrile rubber (HNBR)
Standard typeCompared with nitrile rubber, superior in resistance to heat and abrasion
-30~140
Acrylic rubber (ACM)
Standard type High oil resistance and good abrasion resistance -20~150
High- and low-temperature-resistant type Improved low temperature resistance and same level of heat resistance as the standard type -30~150
Silicone rubber (VMQ)
Standard type Wide operational temperature range and good abrasion resistance -50~170
Fluoro rubber (FKM)
Standard type The most superior in resistance to heat, and good abrasion resistance -20~180
Notes
*1 ASTM: American Society for Testing and Materials
*2 For more details on fluid compatibility, please see the following:
Rubber materials, operational temperature ranges and their compatibility with fluids
The metal case and spring material used in the oil seal should be selected based on the substance to be sealed.
Table 6 shows how to select the metal case and spring materials.
Substance to be sealed Material Metal case Spring
Cold rolled carbon steel sheet
(JIS* SPCC)
Stainless steel sheet
(JIS* SUS304)
High carbon steel wire
(JIS* SWB)
Notes
* JIS: Japanese Industrial Standard
✓: Compatible
✗: Incompatible
―: Not applicable
Oil seals can show good sealing performance in combination with properly designed shafts and housings.
Table 7 shows the shaft design checklist.
Table 8 shows the housing design checklist.
If you are looking for more details, kindly visit NFJ.
Nominal seal width
b, mm
Nominal seal O.D.
D, mm
F
mm Over Up to ― 10 D - 4 10 18 D - 6 18 50 D - 8When the total eccentricity is excessive, the sealing edge of the seal lip cannot accommodate shaft motions and leakage may occur.
Total eccentricity is the sum of shaft runout and the housing-bore eccentricity.
Total eccentricity, shaft runout and housing-bore eccentricity are generally expressed in TIR (Total Indicator Reading).
The allowable total eccentricity is the maximum total eccentricity at which the sealing edge can accommodate shaft rotation and retain adequate sealing performance. The oil seal's allowable total eccentricity is affected by the design of the oil seal, the accuracy of the shaft, and the operating conditions.
For details on shaft and housing design, please see the following:
Examples of allowable total eccentricity for oil seals
Oil seal performance is affected by not only the type and material of the selected oil seal, but also a variety of other factors, such as operating conditions, total eccentricity, rotational speed, the substance to be sealed, and lubrication conditions.
Figure 9 shows items relating to oil seal characteristics.
For a more detailed discussion of seal characteristics, please see the following:
Seal characteristics
When selecting the oil seal that is right for your machine, it is important that the oil seal be appropriate for the requirements of the usage environment and that it be easily acquired for replacement.
In this month's column, "How to select the right oil seal," we conveyed the following points:
1) Oil seal shape and material should be selected based on the housing, substance to be sealed, pressure, rotational speed, total eccentricity, and air-side conditions.
2) Oil seals can show good sealing performance in combination with properly designed shafts and housings.
3) Oil seal performance is affected by not only the type and material of the selected oil seal, but also a variety of other factors, such as operating conditions, total eccentricity, rotational speed, the substance to be sealed, and lubrication conditions. For this reason, diligent care is required in oil seal selection.
In order for the sealing property of the oil seal you selected to really shine, attention needs to be paid to how it is handled.
In the event of seal failure, it is necessary to take effective countermeasures.
We will cover these points in the next column, "Oil Seals (Part 3)".
If you have any technical questions regarding oil seals, or opinions/thoughts on these "Bearing Trivia" pages, please feel free to contact us using the following form:
O-rings and seals are used in a wide range of industries to help you tightly seal the connections in pipes, tubes, and other elements of complex hydraulic and pneumatic systems. Due to many applications, there is also a wide variety of O-ring material choices available. Nitrile (Buna), Neoprene, Ethylene Propylene (EPDM Rubber), Silicone, Fluorocarbon (Viton), and PTFE (Teflon) are among the most commonly used compounds for O-rings and seals.
To answer many of your questions about O-rings, The Hope Group has created an advanced O-ring material selection guide, where we will look at the properties and compatibility as well as the temperature range and hardness of each O-ring material.
When picking the right O-ring for your specific application, there are many factors to consider. They include but are not limited to operating conditions, chemical compatibility, sealing pressure, temperature, durometer, size, and cost. Depending on the specific situation, you may also look at abrasion, tear, ozone, electrical resistance properties. Additionally, you can perform appropriate field tests to ensure the fluid, temperature, pressure, and environmental conditions are compatible with the O-ring of your choice.
In order to accommodate a large variety of applications, manufacturers make O-rings and seals using various elastomers with different physical and chemical properties. Let’s look at some of them below:
Resistant to: Water, Petroleum Oils & Fluids, and Hydraulic Fluids
Not recommended for: Phosphate ester base hydraulic fluids, automotive brake fluids, ketones, strong acids, ozone, freons, halogenated hydrocarbons, and methanol
Temperature Range: -40° to +250°F, although that’s an average for the lower and upper tolerances for the various nitrile butadiene rubber (NBR) compounds manufactured by Parker. Parker’s Buna-N compound, which ranges from 70 to 90 durometer hardness nitrile, withstands temperatures from -30°F up to 250°F which includes compounds N0674
Hardness: 40 to 90 durometers Shore A
Most popular elastomer O-ring material. Parker Hannifin uses 70 durometer hard nitrile (Buna-N) for most of its standard O-rings supplied, with 90 durometer available for tube fittings and adapters. Seal professionals value Buna-Nitrile elastomer for competitive price and excellent resistance properties to petroleum-based oils and fuels, silicone greases, hydraulic fluids, water, and alcohols.
EPDM has a spotless reputation in the sealing world because of its excellent resistance to heat, water and steam, alkali, mild acidic and oxygenated solvents, ozone, and sunlight (UV). Nevertheless, experts do not recommend EPDM compounds for gasoline, petroleum oil and grease, and hydrocarbon environments.
Resistant to: Extreme cold, steam, hot water, sunlight and UV, dilute acids, ketones, alkalis
Not recommended for: Petroleum base oils and di-ester base lubricants
Temperature Range: -65° to +450°F
Hardness Range: 40 to 90 durometers Shore A
Neoprene is a general-purpose elastomer with moderate resistance properties to petroleum oils and weather (ozone, sunlight, UV, and oxygen). Neoprene O-rings have a relatively low compression set, good resilience, abrasion, and are flex cracking resistant.
Resistant to: Refrigerants (freons, ammonia), high aniline point petroleum oils, mild acids, and silicate ester lubricants
Not recommended for: Phosphate ester fluids and ketones
Temperature Range: -45° to +250°F
Hardness: 50 to 80 durometers Shore A
When we talk about fluorocarbon O-rings, Viton is a popular trade name that may come into your mind. Fluorocarbon (FKM) compounds combine high-temperature resistance with excellent chemical resistance. These properties make them a popular choice for many applications, including aircraft and automotive industries.
Resistant to: Petroleum base oils and fluids, some phosphate ester base fluids, silicone and silicate ester base lubricants, acids and halogenated hydrocarbons
Temperature Range: Standards -15°F to +400°F, but some Parker FKM Viton compounds can tolerate temperatures down to –65F and up to +450F.
Hardness: 50-95 Durometers Shore A
Perfluoroelastomers (FFKM) are an extension of the Fluorocarbon FKM elastomers extending the compatibilities of the FKM while at the same time extending the upper temperature limits of the materials while compromising the lower temp limits. FFKMs are the cleanest/purest compounds available on the market. They are the first choice for clean applications and are particularly popular in the semiconductor industry.
Silicone O-rings have many outstanding properties, including excellent flexibility and fatigue life, strong ozone, and UV radiation resistance. Despite the abovementioned characteristics, experts do not recommend silicone O-rings for dynamic applications. The low strength and poor abrasion resistance as well as high gas permeability, make them not compatible with the most petroleum fluids, ketones, water, and steam.
Resistant to: Dry heat (air to 400°F) and high aniline point oils
Not recommended for: Most petroleum fluids, ketones, water and steam
Temperature Range: -175F to +450°F
Hardness: 40-80 Durometers Shore A
Polytetrafluoroethylene (PTFE) O-rings are designed to be used in harsh environments with temperatures ranging from -450°F to 600°F. PTFE O-rings are compatible with the widest range of chemicals, such as acetone, isopropyl, methyl, etc. Furthermore, they have low gas permeability and low absorption. Unfortunately, due to polytetrafluoroethylene material properties, pure PTFE O-rings are very rigid and hard to apply. Therefore, manufacturers, including Parker, solve this problem by mixing PTFE material with various fillers to provide users with more flexibility. PTFE seals are often used in food, pharmaceutical, and medical industries.
Resistant to: Most chemicals, excluding alkali metals, fluorine, a few fluoro-chemicals such as chlorine tri-fluoride and oxygen difluoride
Not recommended for: Applications requiring O-Ring stretch and compression
Temperature Range: -260°F to 300°F
Hardness: 55 to 60 durometer Shore D
All of the above elastomer families as well as those specials not listed are available in many specialty formulations. There are FDA, USP Class VI, Nuclear Grades and compounds that meet AMS, Mil standards as well as other specifications. There are colored and translucent materials as well as internally lubricated materials to meet special needs. There should be a material fit for your application.
As an authorized Parker distributor in addition to standard O-ring materials mentioned above, The Hope Group also offers custom seals that are designed exclusively for your specific application. We take care of any functional requirements, gland limitations, installation improvements, etc. Contact us to learn more or speak to our seal specialists.
Send us a message to get a quote, check availability, or ask any questions
Contact Us
Are you interested in learning more about Friction Sealing Materials? Contact us today to secure an expert consultation!