A Practical Guide to Using Outrigger Pads

06 May.,2024

 

A Practical Guide to Using Outrigger Pads

Check now

I’ve met a lot of people over the years while working in the utility industry. One of those people is in management with a respected manufacturer of aerial devices. Back when OSHA published 29 CFR 1926 Subpart CC, “Cranes and Derricks in Construction,” he and I and a few others were discussing how a utility operation could best comply with some of the standard’s requirements. The OSHA rules were formed with the perspective of typical construction sites in mind. In particular, we discussed the rule’s expectation that the site’s general manager will tell the crane operator about underground obstructions that might collapse and cause a crane to become unstable. It’s obvious that a crane operator setting structures on a right-of-way doesn’t have that luxury, so we were thinking about things we could do. The discussion landed on auxiliary outrigger pads. At the time, my friend from the aerial device company had this to say: “We have occasionally been sued by folks who turned over one of our cranes or aerial devices, but we have never been sued by anyone who had set up on auxiliary pads.”

I don’t know if that’s still the case with that company, but at the time I began to research why auxiliary pads appeared to be an important part of stable setup for aerial devices. Basically, it’s because sometimes even a few square inches of additional pad dimension can increase ground support by tons per square foot. When it comes to the four-point support of an aerial device that weighs in at tons, tons-per-square-foot increases are a good thing.

The expectation for the stability of cranes is clearly demonstrated by the language OSHA uses in the Subpart CC standard. Take 1926.1402, “Ground conditions,” for example. In the preamble, OSHA explains that due diligence in determining ground conditions will prevent numerous overturns, which are the most frequent cause of crane-related fatalities. The preamble also mentions OSHA’s recognition of the utility industry and our good record of low-incident operation compared to the rest of industry.

On bucket trucks, boom trucks, digger derricks and cranes, the manufacturer-supplied outrigger foot is designed to be used as a bearing surface against an auxiliary pad placed by the user. The fixed factory outrigger foot is optimally sized to provide support for all boom configurations on solid foundations. The fixed outrigger foot size also takes into account space and weight, and the qualified operator is expected to be able to determine what additional support is needed to assure stability. The fixed foot on the outrigger is not designed to accommodate all ground conditions and should always be used with an outrigger pad.

Practical Considerations for Stability
In our industry, OSHA’s expectation for stable setup of bucket trucks and digger derricks is not called out literally. Setup stability is expected to be covered as a collective part of the OSHA standards regarding qualification and work-related safety skills that the employer must certify after observing an employee’s demonstrated skill. So, let’s take a look at some practical things that can improve your bucket truck and digger derrick setup stability.

I need to clarify here that there is little – if any – consensus guidance that a policy writer can turn to. The information that follows are workable methods I used for years when I served as the safety director for a big line construction company. So, keep that in mind. The guidance in this document is based on practices common to the lifting industry, information available from public sources and industry experience. I am providing this guidance as a tool to help the reader in developing their own training or policy because I haven’t found any detailed guide on device setup. Also keep in mind that it is the employer’s responsibility to devise policies and practices to establish workplace safety, including performing due diligence in setting up cranes and aerial equipment in accordance with the equipment manufacturers as well as state and federal requirements.

First, outrigger pads should be used under all outriggers in all surface conditions. If you purchase an aerial device today, it is likely to come with synthetic outrigger pads. They should not be relegated to use in sandy areas only. Bucket truck and digger derrick operating rules often call out setting up on manufacturer-provided outrigger pads. Cribbing (dunnage) is additional support used under an auxiliary outrigger pad. It is added in muddy conditions and stacked to achieve leveling on sloped ground. Cribbing is convenient to add additional size because you can build a 4-foot-by-4-foot pad over a soft spot or mud without having to cart around a 4-foot-square, 200-pound auxiliary outrigger pad. Cribbing also comes out of mud easier (tie a rope to one end) than a 3- or 4-foot-square outrigger pad, and it can be used to raise a pad to level a truck. During my time as a safety director for construction, I would survey the site before mobilization. If we weren’t using crane mats, I would frequently identify a local sawmill that could run a truckload of 3-foot 4x4s to keep on-site for our cranes and buckets used to perform transmission construction. These green wood dunnage pieces are inexpensive, environmentally friendly and can be left behind or given away when no longer needed. They also become a handy goodwill tool for the people you have been inconveniencing for the last few months, although there are rarely any left because lineworkers tend to burn them during winter for heat in the laydown area.

Below is a table that offers guidance on minimum cribbing lengths for digger derricks, bucket trucks and light boom trucks when supplementing factory outriggers with built-up pads or when providing additional support for factory-provided pads. There is no guarantee this table is foolproof since it relies on the proper performance of certain ground conditions. However, after years of following these guidelines, they seem to work well since no bucket or derrick I was overseeing failed to remain upright. Check your operator manuals and you likely will find similar guidance. This table is based on the widths of outrigger feet and a pad dimension increased safety factor of 2.5.

Note: Minimum cribbing lengths shall be 2.5 times the width of the digger derrick/truck crane outrigger foot. Use this table to select minimum lengths of cribbing planks.

Cribbing Under Pads
As I noted earlier, digger derricks and bucket trucks often come from the manufacturer with outrigger pads. Manufacturer pads have historically performed well in support of the bucket trucks and derricks they accompany. However, manufacturer-supplied pads do not relieve the employer of the responsibility to assure pads and cribbing under an outrigger will safely support the vehicle in the conditions present. The operator still must carefully observe the manufacturer’s pads for sinking or deformation during loading. Adding cribbing as described above will limit sinking and bending of the auxiliary pads in soft conditions. If you see one of your pads sink or bend, add dunnage supplement pads as needed. A competent person should attempt to quantify the load-bearing capacity of the soil when conditions are suitable for making those calculations.

Calculations for Outrigger Pads
I was qualified as a crane operator many years ago and recently found some training materials from that class, which provide the following recommendations. 

When compaction information is available or a pocket penetrometer is used to measure soil compaction, lift planners may use the following calculations to compute support limits by outrigger pad area for constructed pads. This method was published by NCCCO CraneTech in April 2006. 

Method for Determining Crane Outrigger Pad Dimensions When Soil Compaction is Known
The total loaded weight of a crane is divided by the total number of outriggers in touch with the earth to determine the maximum weight that will be placed on each outrigger. The total weight on the outrigger must be less than the weight that can be supported by the earth without further compressing. If the earth beneath an outrigger should further compress during a lift, the rig will become unstable. The weight-load capability of compacted soil, known as the soil’s compressive strength, usually is rated in tons per square foot (tsf). The following process requires that soil compaction be stated in pounds per square inch (psi) in order to estimate the pad dimensions in square inches needed to support the weight to be applied.

The weight of a crane and load cannot be evenly divided among the outriggers because swinging over a single outrigger loads that point more than all of the others. Crane manufacturers design each outrigger to handle the total weight of the crane and load. Using the total weight of the crane plus the load weight computed against the ground resistance to calculate pad size matches the manufacturer’s capacity for the outrigger and ultimately provides a good safety factor for pad applications.

Step 1: Convert tsf to pounds per square foot (psf).
Formula: tsf * 2,000 = psf
Example: 1.5 tsf * 2,000 = 3,000 psf

Step 2: Convert psf (when known) to psi.
Formula: psf ÷ 144 = psi the soil will support
Example: 3,000 ÷ 144 = 20.83 psi 

To compute pad area for a lift for calculated crane-plus-load weight:
Formula: square root of total crane weight ÷ soil psi = pad dimension

For example, let’s say the crane and load weight are 78,000 pounds and soil compaction is 20.83 psi. Given that Ö(78,000 ÷ 20.83) = 61, the pad size is 61 inches by 61 inches (approximately 5 feet square).

Cribbing Best Practices
If you are using outrigger pads for cranes that are constructed of wood cribbing (beams or blocks), the following best practices should be followed:

  • Cribbing planks should not be less than 3-inch-thick hardwood or built-up plywood.
  • Cribbing assembled on-site shall be a minimum of three layers for 3-inch-thick planks or two layers for 4-inch-thick planks.
  • Cribbing shall not bend or deform in any manner under loading.
  • Each successive layer of cribbing shall be laid at a right angle to the layer below.
  • The top cribbing layer in contact with the crane outrigger foot shall be at least as wide as the outrigger foot.
  • Cribbing should not be used if it is split, warped or excessively worn.

Guidance on Cribbing Constructed Pads
Cribbing is laid at a bias (right angle) to evenly spread out the load from the crane outrigger foot. Using three layers for 2-inch planking distributes the stresses across all of the boards in the lower two layers, creating a single, larger unit of resistance.

Pads constructed of cribbing (dunnage) planks that are 4 inches thick may be constructed in two layers, provided that the top layer of cribbing is wider than the crane outrigger foot and that the bottom layer is at least as wide as the length of the top layer. If a built-up pad bends under load, additional layers must be laid.

When to Crib, When to Excavate
Cranes, derricks, boom trucks and bucket trucks must be set up levelly in accordance with manufacturer standards. Cribbing alone will not always solve leveling problem, and in some cases, cribbing will make the setup less stable than an incline.

There are no national standards or limits regarding how to build cribbing or how high cribbing can be built. The operator must understand the physics at work to determine how and when cribbing and excavating must be used.

Soil finds its natural slope in accordance with its granular weight, granular shape, moisture content and organic content. This slope is called the angle of repose. The angle of repose can be disturbed by pressure and cause the soil to slide or otherwise be displaced. The greater the angle of repose, the greater the chance the soil can be disturbed.

When setting up a crane on a slight angle, the use of cribbing stacks can level the crane with careful placement of interlocked cribbing of two or three layers. The more cribbing layers used, the less stable the cribbing may be if not properly interlocked and constructed. In addition, cribbing can be destabilized by the outriggers opposite the cribbed outrigger, especially where high angles are concerned. If the angle is too great, an articulating outrigger may engage the soil at a fairly high angle. The higher the angle, the more push is created toward the opposite-side outrigger set up on cribbing.

Sometimes a better choice is to excavate a pad into a slope on which to set up a crane. There is no standard for the size of a pad excavation, but experience teaches that a pad three times the longest length of the equipment to be set up is reliable.

About the Author: After 25 years as a transmission-distribution lineman and foreman, Jim Vaughn, CUSP, has devoted the last 22 years to safety and training. A noted author, trainer and lecturer, he is a senior consultant for the Institute for Safety in Powerline Construction. He can be reached at jim@ispconline.com.

Crane & Outrigger Pad Safety: Use & Handling Guidelines

Outrigger and Crane Pad Safe Use and Handling Guidelines

  Think Safety. Slow Down and Use Common Sense.  

  • No set of safety guidelines can cover all possible scenarios. When in doubt, slow down and stop the process. Think it through.

  • Look for impediments, depressions, voids, trenches, excavations, slopes or signs of poor ground conditions that can lead to an unsafe situation. If found, correct the situation to a compacted and level surface or do not set up.

  • Be aware of potential vehicle traffic that may conflict with your area of operation. Redirect traffic or adjust your outrigger pad set up as needed.

  • By itself, no outrigger pad can provide a complete guarantee of safety. Common sense always needs to be used.

  Always Follow the Original Equipment Manufacturer’s Guidelines

  • Operators must use all of the original equipment manufacturer’s guidelines for their outrigger-enabled equipment when using outrigger pads.

  • Failure to comply with all manufactures fitting and training guidelines can result in serious injuries or fatalities in addition to significant property and equipment damage.

  Always Use Outrigger Pads or Crane Pads

Every time the outriggers are deployed, your outrigger pads or crane mats must be under them.

  Assess Your Ground Conditions

 Ultimately the ground is supporting everything. It must be taken into consideration in every application.

  • Outrigger pads should always be set-up on sufficiently compacted, drained and level surfaces.
  • All uneven ground should be leveled prior to the placement of any outrigger pad or crane pad.

  Managing Deflection 

If excessive deflection is occurring due to ground displacement, the ground is not suitable to provide the load bearing capacity that is needed to support the load. Excessive deflection limits proper load distribution, and can cause damage to outrigger pads or crane mats over time. The below methods can be used to improve both the set-up and ground conditions to reduce deflection.

If you are looking for more details, kindly visit XINXINGHUAGONG.

  • Add additional supporting materials that are more rigid and create a larger area.

  • Add additional supporting materials that are stiffer to ensure rigidity, stability and safety. If additional supporting materials are needed, see “Stacked Outrigger Pad Setups” for how to properly place them.

  • Compact the soil using appropriate soil compaction equipment such as a roller, plate soil compactor, rammer or similar equipment.

  • Add rock, gravel or cement like materials to the soil to increase the ground bearing capacity.

  • Blade the soil to remove insufficiently compacted surface layers and expose sufficiently compacted ground.

  • Allow wet soils time to dry, drain needed areas and/or add rock, gravel or cement like materials as noted above.

  • Verify the outrigger pads you are using have enough surface area to spread the outrigger load over the area required to be equal to or lesser than the ground bearing capacity.

  Inspection 

How to inspect your outrigger pads and crane mats.

  • Outrigger pad/floats must be smooth and free from debris in order to evenly spread the load and achieve solid contact with the outrigger pad or crane mat.

  • Always inspect your outrigger pads and crane mats for material integrity prior to use. If they are compromised for any reason or you are unsure, do not use and call 800.610.3422.

  • If using additional cribbing, dunnage or other supporting materials in conjunction with DICA outrigger pads or crane pads, always inspect them for cracking, warping, rotting or other signs of possible failure. If the additional materials show signs of compromised integrity, do not use.

  Proper Placement of Outrigger Pad/Float

 Proper pad/float placement is critical to effective load support and distribution.

  • The crane outrigger float should be placed squarely in the center of an outrigger pad or crane mat. FiberMax crane pads  have standard “foot placement targets” to assist with proper pad/float placement.

  • Outrigger pads/floats placed outside target area (center of the pad/mat) will result in non-uniform ground bearing pressures.

  Stacked Outrigger Pad Setups

 Failure to comply with the below guidance may result in “point loading”.  Point loading concentrates the load and increases pressure, rather than spreads the load and decreases pressure. Point loading increases the possibility of a tip-over and with it, serious injuries or fatalities in addition to significant property and equipment damage.

  • When stacking outrigger pads, always stack a smaller outrigger pad on top of a larger underlying pad.

  • Never stack a larger outrigger pad on top of smaller outrigger pads, cribbing, dunnage or other supporting materials.

  • Always use materials of a known strength that are designed as support for heavy equipment.

  Do Not Span Voids or Depressions

Do not under any circumstances use DICA outrigger pads or crane pads to set up over depressions or voids of any type. Supporting materials of any kind should always be set-up on compacted, drained and level surfaces. Monitor your outrigger pad setup, ground conditions, personnel and surroundings at all times for potential safety problems.

  Equipment Grounding

Safety Tech outrigger pads and FiberMax crane pads are an insulator that prevents the transmission of electrical current from the equipment to the ground. If electrical grounding is needed, see your original equipment manufacturer’s guidelines for proper grounding procedures and follow the listed instructions.

  • Due to atmospheric conditions, static electricity can build up on equipment. However, static electricity is not created, nor does it build up within Safety Tech outrigger pads when they are in use.

  • Electrical material properties of the engineered thermoplastic material used in Safety Tech outrigger pads includes the following: Surface resistivity of 10 to the 15th ohms/square (ASTM EOS/ESD S11.11) Dielectric strength short term of 2,300 volts/mil (ASTM D149).

  Temperature Range

 The following are acceptable operating temperature ranges.

  • Safety Tech Outrigger Pads: -40 to 180 Fahrenheit / -40 to 82.22 Celsius

  • FiberMax Outrigger Pads: -60°F to 180°F / -51 to 82.22 Celsius

  • FiberMax Mega Duty: -40°F to 160°F / -40 to 71 Celsius

  Proper Maintenance and Stowing

 Maintain DICA outrigger pads and crane mats using the below methods.

  • Use low to medium pressure water to remove soil, mud, road chemicals, hydraulic fluid or other debris. 

  • Alternate the use of SafetyTech outrigger pad sides to distribute any potential surface wear and maximize shape recovery. Side alternation does not apply to FiberMax products.

  • Secure all outrigger pads and crane pads prior to vehicle transit in a way that prevents their motion or loss. 

  Safe Lifting and Handling

Use the following guidelines when handling DICA outrigger pads

  • When lifting DICA outrigger pads users should use their legs as the primary source of lifting power.

  • To safely roll round Safety Tech outrigger pads, begin by standing the pad on edge. Position yourself to the back or side of the pad. Carefully roll the pad to the intended location and follow the outrigger pad lowering instructions below.

  • To safely place pads that are standing on edge into position, two methods may be used.

    • Dropping: Verify all personnel not involved in lowering the outrigger pad are a safe distance away from where the pad will be placed. Have the personnel involved in the lowering stand on the side away from where it will be located. Once the area where the pad will be positioned is clear, allow the pad to fall away and drop into place.

    • Lowering: Verify all personnel not involved in lowering the outrigger pad are a safe distance away from where the pad will be placed. In unison, slowly lower the pad by bending at the knees while maintaining a flat back until the pad lies flat.

      If you are looking for more details, kindly visit Crane Outrigger Pads.